a2 United States Patent

Kim et al.

US009215271B2

10) Patent No.: US 9,215,271 B2
(45) Date of Patent: *Dec. 15, 2015

(54) METHOD AND APPARATUS FOR

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(30)

EXECUTING APPLICATION OF MOBILE

DEVICE

Applicant: Samsung Electronics Co., Ltd.,
Gyeonggi-do (KR)

Inventors: Joo Hyun Kim, Gyeonggi-do (KR);
Byung Woan Kim, Seoul (KR)

Assignee: Samsung Electronics Co., Ltd (KR)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/227,417

Filed: Mar. 27,2014

Prior Publication Data

US 2014/0215012 A1

Jul. 31, 2014

Related U.S. Application Data

Continuation of application No. 13/283,190, filed on

Oct. 27, 2011, now Pat. No. 8,700,733.

Foreign Application Priority Data

Nov. 22, 2010

(1)

(52)

Int. Cl1.
HO4L 29/08
HO4L 29/06
GO6F 13/12
GO6F 9/445
HO4M 1/725
U.S. CL

CPC ...

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

10-2010-0115962

HO4L 67/10 (2013.01); GOGF 9/445

(2013.01); GOG6F 13/126 (2013.01); HO4L
67/40 (2013.01); H04M 1/72527 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,379,389 A * 1/1995 Whislerccovviiiiinne 710/5
5,742,778 A * 4/1998 Haoetal. . .. 715/759
6,070,236 A * 52000 Winter 712/209

6,360,364 B1* 3/2002 Chenetal.
6,732,148 B1* 5/2004 Estradaetal. 709/205
6,748,423 B1* 6/2004 Khannaetal. 709/210
7,461,135 B2* 12/2008 Murayamaetal. 709/217

(Continued)

. 711/169

FOREIGN PATENT DOCUMENTS

EP 1672 509 6/2006
OTHER PUBLICATIONS

‘Universal Serial Bus Specification” Revision 2.0, Apr. 27, 2000, pp.
19, 20, 240.*

(Continued)

Primary Examiner — Steven Snyder
(74) Attorney, Agent, or Firm — The Farrell Law Firm, P.C.

(57) ABSTRACT

An apparatus and method for executing an application within
a mobile device is provided. The method includes receiving,
at a first device, a message from a second device external to
the first device, the message including an application identi-
fier; executing, at the first device, at least one application
among a plurality of applications based at least in part on the
application identifier; and performing, at the first device, a
function of the at least one application based at least in part on
a command received from the second device.

18 Claims, 6 Drawing Sheets

320 350

e | (ot assin

FECEE COMAND FON
5

FORWARD COMMAD

PROCESS COMMAND AHO
CREATE FESPONSE

§655
sy
CREATE FALURE
RESPOISE

SEHD FESPOISE

‘CREATE SUCCESS
RESPONSE

FORWARD RESPONSE
TohosToewie_|~5665

US 9,215,271 B2

Page 2
(56) References Cited 2006/0050060 Al* 3/2006 Changccooevennee 345/173
2006/0294218 Al* 12/2006 Tanaka et al ... 709/224
U.S. PATENT DOCUMENTS 2007/0083610 Al* 4/2007 Treder etal. .. 709/217
2008/0052755 Al* 2/2008 Phametal.coo. 726/1
7,765,254 B2* 7/2010 Hariharan et al. 709/201 2008/0109734 Al* 5/2008 Castagno 715/740
7,912,994 B2* 3/2011 Cornwell et al. . 710/14 2008/0140756 Al* 6/2008 Tanaka et al .. 709/201
7,941,806 B2* 5/2011 Hobbsetal. ... 719313 2008/0250172 Al* 10/2008 Tanaka 710/63
8,122,103 B2* 2/2012 Grimault et al. . 709/219 2009/0268754 Al* 10/2009 Palm et al. 370/466
8,125,908 B2* 2/2012 Rothstein et al. .. 3701235 2009/0307679 Al ~ 12/2009 Lee etal.
8,219,805 B1* 7/2012 Ieetal. ... 713/157 2010/0077061 Al* 3/2010 Hsuehetal. ..o 709/219
8,250,245 B2* 82012 Tanaka 710/14 2011/0016256 Al 1/2011 Hatada
8,458,250 B2* 6/2013 Sivasubramanian etal. . 709/203 2011/0072186 AL* 32011 Cheng ..ooooooviivvvien. 710/315
8,516,079 B2* 82013 Hsuehetal. ...ccooov...... 709/219 2013/0067497 Al* 3/2013 Seo et al. .. 719/318
8,527,680 B2* 9/2013 Hatada 710/104 2013/0226986 Al* 82013 Zievers 709/202
9,001,694 B2* 4/2015 Emeott et al. .. 370/254 2013/0276063 Al* 10/2013 Hahmetal.ccccoenenne. 726/3
2002/0188736 Al* 12/2002 Jarvensivu 709/229
2005/0066069 Al* 3/2005 Kaji 710/1 OTHER PUBLICATIONS
*
%882;8}55822 ﬁ} * ggggg gﬁfnr?l;tl al ;égg?g Wikipedia’s article on ‘iPod Classic’ from Sep. 11, 2010.*
2005/0193108 AL1* 9/2005 HIr0OSe .oovvvvvoveoevovnn, 709/223 Wikipedia’s article on ‘iPad’ from Nov. 16, 2010.*
2005/0198378 AL* 9/2005 OKada ..ooveoooeeooiii, 709/238 ‘Chord: A Scalable Peer-to-peer Lookup Service for Internet Appli-
2005/0204044 A1* 9/2005 Araki . wr 709227 cations’ by Ion Stoica et al., Jan. 10, 2002.*
2005/0223079 Al* 10/2005 Konishi ... 709/208 ‘Universal Serial Bus Specification” Revision 2.0, Apr. 27, 2000, pp.
2006/0015585 A1* 1/2006 Okada oo 709/219 i, ii, 250-256.
2006/0020621 Al* 1/2006 Araki et al. ... 707/102
2006/0037029 Al* 2/2006 Yamada 719/327 * cited by examiner

U.S. Patent Dec. 15, 2015 Sheet 1 of 6 US 9,215,271 B2

FIG. 1
Prior Art
110
APPLICATION
APPLICATION MODULE 1~ 120
APPLICATION LAYER
KERNEL LAYER

SERIAL PORT MODULE |~J.-130

OEVICE DRIVER |~ 140

1504 SERIAL PORT SERIALPORT >

MOBILE DEVICE~_ 100

105--HOST DEVICE

US 9,215,271 B2

Sheet 2 of 6

Dec. 15, 2015

U.S. Patent

10130 1S0H-G0¢

002~-30IA30 FTI90N
dSN/WIC0W/LH0d TWIHIS 140d T¥I43S 092
1
062~ HIAIHO 30130 0e2
1 %
oz~ J1N00W - J1NAOW
HIAH3IS 1H0d TWIHIS N3O 140d TIH3S
HIAYT TINHIN
dIAY1 NOILYDI1ddY
0227 1~{ FINCOW NOILYDIddY
NOILYOITddY
\'\
01¢
¢ Old

US 9,215,271 B2

Sheet 3 of 6

Dec. 15, 2015

U.S. Patent

1IN00W N3O
140d 1435

08z~ y3nY0 391N
A
' 098
o1e~ | HDYNYI WALSAS _ 1IN
140d Y1438 ONISSI04d 1NINT
A
0ve
- Y 1NN -
Eos_wé\ 10001044 = 4ISHYd 1090104d ~ NOILYJINNIAWOD ¥1v0
oee 0ce TINCON HINHIS 1HOd TYIHIS
y
oce~| HEONYR
NOLLYOITddY
¢ "OId

\r\
0€¢

[

U.S. Patent

Dec. 15, 2015 Sheet 4 of 6 US 9,215,271 B2
FIG. 4
C START)
Y
CHANGE MODE ~—3410
Y
CHECK CURRENT MODE -~ S420
Y
EXECUTE APPLICATION -~ S430
Y
PERFORM FUNCTION OF EXECUTED L sa40

APPLICATION

\

J

C END)

U.S. Patent Dec. 15, 2015 Sheet 5 of 6 US 9,215,271 B2

FIG. 5
HOST DEVICE |~ 205 200 —~| MOBILE DEVICE
MODE CHANGE REQUEST
(OPEN SERIAL MODE] ~[~so10
. MODE CHANGE RESPONSE 5520
(OK]
CURRENT MODE CHECK REQUEST -
(IS SERIAL MODE) = 5930
. CURRENT MODE CHECK RESPONSE s540
APPLICATION EXECUTION REQUEST - sesn
(EXE - 1234567890 | EXE MUSIC Player) -
APPLICATION EXECUTION RESPONSE
- (Success | Fail 5960
. SEND COMMAND TO PERFORM FUNCTION OF APPLICATION 8570

U.S. Patent Dec. 15, 2015 Sheet 6 of 6 US 9,215,271 B2

FIG. 6
310 320 300
SERIAL PORT SYSTEM MANAGER PROTOCOL PARSER APPLICATION MANAGER
Y
T
FORWARD COMMAND $610

ANALYZE COMMAND |~_S615

$620
PREDEFINED
COMMAND? 625
/
YES T0 SERIAL PORT
CLIENT MODULE
S630
ST PROCESSIIG FORWARD COMMAND | ...
COMMAND? N0
VES $S640

PROGESS COMMAND AND
CREATE RESPONSE |~ 5639

APPLICATION
EXECUTION COMMAND2

- SEND RESPONSE $637
APPLICATION EXECUTED?
5605
A
CREATE FAILURE CREATE SUGCESS
RESPONSE RESPONSE
- ¥ SEND RESPONSE S660
FORWARD RESPONSE

TOHOST DEVICE |~ S889

US 9,215,271 B2

1
METHOD AND APPARATUS FOR
EXECUTING APPLICATION OF MOBILE
DEVICE

PRIORITY

This application is a Continuation application of U.S.
patent application Ser. No. 13/283,190, which was filed in the
U.S. Patent and Trademark Office on Oct. 27, 2011 and
claims priority under 35 U.S.C. §119(a) to a Korean patent
application filed in the Korean Intellectual Property Office on
Nov. 22, 2010 and assigned Serial No. 10-2010-115962, the
entire contents of each of which are incorporated herein by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to application
execution technology for mobile devices and, more particu-
larly, to a method and apparatus for enabling an external
device to execute an application installed in a mobile device
when the external device is connected to the mobile device
through a serial port.

2. Description of the Related Art

Typically, when a mobile device is connected to an external
device through a Universal Serial Bus (USB) serial port,
device permission for the mobile device is granted according
to an application installed in the mobile device. More specifi-
cally, such an application has exclusive device permission,
and all communicated data is processed directly by the appli-
cation. Therefore, an external device cannot execute or con-
trol any application installed in the mobile device.

Meanwhile, a mobile device (e.g., a mobile phone, a Por-
table Multimedia Player (PMP), etc.) has a limited amount of
space for mounting its components. To overcome such limi-
tations, the mobile device may integrate various interfaces,
such as an external storage device, a modem, and/or a serial
port, with a single USB connection. However, in case of such
interfaces, when an Operating System (OS) or any other
applications installed in the mobile device are executed, such
applications have exclusive authority for connections with
external devices. Therefore, the external device does not have
authority to execute or control any application installed in the
mobile device.

BRIEF SUMMARY OF THE INVENTION

Accordingly, the present invention is provided to address
the above-mentioned problems and/or disadvantages and to
offer at least the advantages described below.

An aspect of the present invention provides a method and
apparatus for allowing an external device to execute an appli-
cation installed in a mobile device when the external device is
connected to the mobile device through a serial port.

Another aspect of the present invention provides a method
and apparatus for allowing an external device to change a
connection mode of a mobile device to a serial port mode
when the external device is connected to the mobile device
through any interface. In this case, an application installed in
the mobile device being in the serial port mode may be
executed and controlled by the external device.

According to one aspect of the present invention, a method
is provided. The method includes receiving, at a first device,
a message from a second device external to the first device,
the message including an application identifier; executing, at
the first device, at least one application among a plurality of

15

20

25

40

45

55

2

applications based at least in part on the application identifier;
and performing, at the first device, a function of the at least
one application based at least in part on a command received
from the second device.

According to another aspect of the present invention, an
apparatus is provided. The apparatus includes a memory
operatively coupled to the apparatus, to store a plurality of
applications; and a controller to receive a message including
an application identifier from another device, execute at least
one application among a plurality of applications based at
least in part on the application identifier, and perform a func-
tion of the at least one application based at least in part on a
command received from the other device.

A non-transitory machine-readable storage device storing
instructions that, when executed by one or more processors,
cause the one or more processors to perform operations, is
provided. The operations include receiving, at a first device, a
message from a second device external to the first device, the
message including an application identifier; executing, at the
first device, at least one application among a plurality of
applications based at least in part on the application identifier;
and performing, at the first device, a function of the at least
one application based at least in part on a command received
from the second device.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, advantages, and features of
certain embodiments of the present invention will become
apparent to those skilled in the art from the following detailed
description taken in conjunction with the accompanying
drawings, in which:

FIG. 1 is a schematic diagram illustrating a connection
scheme between a mobile device and a host device;

FIG. 2 is a schematic diagram illustrating a connection
scheme between a mobile device and a host device in accor-
dance with an embodiment of the present invention;

FIG. 3 is a block diagram illustrating a detailed internal
configuration of a serial port server module shown in FIG. 2;

FIG. 4 is a flow diagram illustrating a basic process for
executing an application of a mobile device in accordance
with an embodiment of the present invention;

FIG. 5 is a flow diagram illustrating a detailed process for
executing an application of a mobile device in accordance
with an embodiment of the present invention; and

FIG. 6 is a flow diagram illustrating a signal flow between
internal blocks of a mobile device when an application of the
mobile device is executed in accordance with an embodiment
of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE PRESENT INVENTION

Non-limiting embodiments of the present invention are
described in more detail herein with reference to the accom-
panying drawings. Well-known or widely used techniques,
elements, structures, and processes may not be described or
illustrated in detail to avoid obscuring the essence of the
present invention. Although the drawings represent certain
embodiments of the invention, the drawings are not necessar-
ily to scale and certain features may be exaggerated or omit-
ted in order to better illustrate and explain the present inven-
tion.

Among terms set forth herein, the term “external device”
refers to a device that exists separately from and operates
independently of a mobile device. Herein, such an external
device may also be referred to as a host device, since an

US 9,215,271 B2

3

external device according to embodiments of the present
invention can control a mobile device.

Additionally, the term “serial port” refers to a type of
input/output port installed in a mobile device or a host device.
A serial port is a serial communication physical interface
through which information transfers in or out one bit at a time.
Although are described with reference to use of a serial port as
an interface through which a mobile device and a host device
are connected, the present invention is not limited thereto, and
other interfaces may be used in accordance with embodi-
ments of the present invention.

FIG. 1 is a schematic diagram illustrating a connection
scheme between a mobile device and a host device.

As shown in FIG. 1, an application 110 installed in a
mobile device 100 may include an application layer and a
kernel layer.

The application layer includes an application module 120,
which has identification information and execution informa-
tion (i.e., the executable program code) about the installed
application.

The kernel layer includes a serial port module 130, a device
driver 140, and a serial port 150.

The serial port module 130 converts a hardware event or
any other event physically occurring at a lower layer into a
software event and then forwards the converted event to an
upper layer, or converts a software event occurring at an upper
layer into a hardware event and then forwards the converted
event to a lower layer.

The device driver 140 operates as a part of a kernel and
controls at least one host device connected thereto. The
device driver 140 is software composed of function sets that
interact with other parts of a kernel through a predefined
interface.

The serial port 150 is a wired interface that physically
connects the mobile device 100 and a host device 105. The
serial port 150 sends and/or receives data one bit at a time.
Although the serial port 150 described herein is used as a
wired interface for connecting the mobile device and the host
device is, wireless interfaces may alternatively be used in
accordance with embodiments of the present invention.

According to the above-described connection scheme
between the mobile device 100 and the host device 105,
device permission for the mobile device 100 is provided with
respect to an application installed in the mobile device 100.
Therefore, according to a conventional implementation, a
host device 105 would not be permitted to execute or control
an application installed in the mobile device 100.

In order to address the above-described problems, embodi-
ments of the present invention provide a method and appara-
tus for allowing a host device to execute an application
installed in amobile device when the host device is connected
to the mobile device through a serial port, as will be described
hereinafter.

FIG. 2 is a schematic diagram illustrating a connection
scheme between a mobile device 200 and a host device 205 in
accordance with an embodiment of the present invention.

Referring to FIG. 2, an application 210 installed in the
mobile device 200 may include an application layer and a
kernel layer.

The application layer includes an application module 220,
which has identification information and execution informa-
tion (i.e., executable program code) about the installed appli-
cation.

The kernel layer includes a serial port client module 230
within the application 210, and further includes a serial port
server module 240, a device driver 250, and a serial port 260
external to the application 210.

10

15

20

25

30

35

40

45

50

55

60

65

4

The serial port client module 230 provides an interface for
connecting the application module 220 to the serial port
server module 240. The serial port client module 230 may
send or receive data to and/or from the serial port server
module 240 by using an appropriate technique such as Inter-
Process Communication (IPC), a pipeline, a shared memory,
etc.

According to some embodiments of this invention, the
serial port client module 230 may receive an application
function run command from the serial port server module 240
and forward the received application function run command
to the application module 220. Then, the application module
220 receives the application function run command from the
serial port client module 230 and controls a specific applica-
tion to perform a particular function corresponding to the
received command.

If the application is a music player, for example, the serial
port client module 230 may receive a play command from the
serial port server module 240 and deliver the received play
command to the application module 220. Then, the applica-
tion module 220 controls the music player to play a selected
music file.

The serial port server module 240 receives, from the host
device 205, a control command for changing a connection
mode of the mobile device 200 to a serial port mode. Then,
depending on the received command, the serial port server
module 240 changes a connection mode of the mobile device
200 to a serial port mode.

If'the mobile device 200 is connected to the host device 205
through a wired interface such as USB, for example, the wired
interface may provide various functions for using the mobile
device 200 as an external storage device, a modem, a serial
port, etc. When using a USB connection, if the wired interface
is initially set to use the mobile device 200 as an external
storage device, a change to a serial port mode is required. In
order for this change to occur, the serial port server module
240 receives, from the host device 205, a control command
for changing a serial port mode and then changes a mode of
the mobile device 200 to a serial port mode.

Additionally, the serial port server module 240 receives an
application execution command from the host device 205
connected to the mobile device 200. Upon receiving the appli-
cation execution command, the serial port server module 240
controls the execution of a specific application installed in the
mobile device 200.

Furthermore, the serial port server module 240 receives an
application function run command from the host device 205
connected to the mobile device 200. Upon receiving the appli-
cation function run command, the serial port server module
240 forwards the received command to the serial port client
module 230 so that a particular function may be performed.

Meanwhile, according to some embodiments of this inven-
tion, the serial port server module 240 is executed indepen-
dently of the serial port client module 230. A detailed internal
configuration of the serial port server module 240 is described
later herein with reference to FIG. 3.

The device driver 250 operates as a part of a kernel and
controls at least one host device connected thereto. The
device driver 250 is software including function sets that
interact with other parts of a kernel through a predefined
interface. According to embodiments of this invention, the
device driver 250 receives data and/or a control signal from
the host device 205 and then forwards the received data and/or
control signal to the serial port server module 240. More
specifically, the device driver 250 may receive at least one of
an application execution command and an application func-

US 9,215,271 B2

5

tion run command from the host device 205 and then forward
the received at least one command to the serial port server
module 240.

The serial port 260 is a wired interface that physically
connects the mobile device 200 and the host device 205. The
serial port 260 sends and/or receives data one bit at a time.
Although the serial port 260 described herein uses a wired
interface for connecting the mobile device and the host
device, a wireless interface may be used in accordance with
embodiments of the present invention.

FIG. 3 is a block diagram illustrating a detailed internal
configuration of a serial port server module 240 shown in
FIG. 2. Referring to FIG. 3, the serial port server module 240
may include a serial port system manager 310, a protocol
parser 320, a protocol memory unit 330, a data communica-
tion unit 340, an application manager 350, and an event
processing unit 360.

The serial port system manager 310 receives data and/or a
control signal (e.g., a command) from the device driver 250
located at a lower layer and forwards the received data and/or
control signal to the protocol parser 320. Also, the serial port
system manager 310 receives data or a control signal from the
data communication unit 340 and forwards the received data
and/or signal to the device driver 250. Additionally, when
detecting an event such as a connection of the host device 205,
the serial port system manager 310 sends the detected event to
the event processing unit 360.

The protocol parser 320 parses data and/or control signal
received from the serial port system manager 310 according
to a relevant protocol. If any command is recognized as a
result of parsing, the protocol parser 320 checks the protocol
memory unit 330 in order to determine whether the recog-
nized command is predefined.

The protocol memory unit 330 may store predefined com-

mands, which are exemplarily shown in Table 1.
TABLE 1
Command Description
AT+OSPSERIALOPEN Activates the serial communication feature on
(Mode Change Request) the device.

Remarks: The serial communication feature is
deactivated when the user disconnects the USB
cable.

A command for changing a connection mode
of the mobile device to a serial port mode
Checks availability of the serial communication
feature. If the port is available, the device
returns “Osp:Msg="0K"”. Uses “{Message}”
for the conditional launch.

A command for checking whether a connection
mode of the mobile device is changed to a
serial port mode

See also:
App::AppManager::RegisterAppLaunch()

A command for executing an application
installed in the mobile device

It is the response message for “Osp:Req”.

A command for responding with application
execution results such as success and failure

Osp:Msg="Hello’
(Current Mode Check
Request)

Osp:Req="*{Message}’
(Application Execution
Request)

Osp:Res="Success|Fail’
(Application Execution
Response)

Namely, the protocol parser 320 determines whether a
received command is pre-stored (i.e., predefined) in the pro-
tocol memory unit 330. Upon the determination, the protocol
parser 320 forwards a non-stored command to the data com-
munication unit 340. A non-stored command may be an appli-
cation function run command, such as a play command for a
music player, for example.

Meanwhile, the protocol parser 320 further determines
whether pre-stored commands allow may be self-processed.

10

15

20

25

30

35

40

45

50

55

60

65

6

If any pre-stored command is a self-processable command
(i.e., if any pre-stored command can be processed by the
protocol parser 320), the protocol parser 320 processes the
command and returns a response according to the command.
If any pre-stored command is a non-self-processable com-
mand, the protocol parser 320 forwards the command to the
application manager 350. A self-processable command may
include commands such as a mode change request and a
current mode check request, and a non-self-processable com-
mand may include commands such as an application execu-
tion request.

According to some embodiments of the present invention,
if a prefix of the received command contains “Osp” (see Table
1), the protocol parser 320 may not forward the command to
the data communication unit 340.

The data communication unit 340 may include a data
receiver (not shown) and a data transmitter (not shown). The
data communication unit 340 receives a command (e.g., an
application function run command) from the protocol parser
320 and forwards the received command to the serial port
client module 230. The data communication unit 340 may
receive a command (e.g., an application function run com-
mand) from the serial port client module 230 and forward the
received command to the serial port system manager 310.

The application manager 350 receives a command (espe-
cially, an application execution command) from the protocol
parser 320 and executes a requested application. According to
some embodiments of this invention, in order to identity and
execute a specific application, the application manager 350
may store information about applications installed in the
mobile device 200, especially information for identifying a
requested application.

The event processing unit 360 receives an event in connec-
tion with a connection occurring at the serial port 260 or an
event regarding a system failure from the serial port system
manager 310 and then processes the received event.

FIG. 4 is a flow diagram illustrating a basic process for
executing an application of a mobile device 200 in accor-
dance with an embodiment of the present invention.

As discussed above, if the mobile device 200 is connected
to the host device 205 through a wired interface such as USB,
the wired interface may offer various functions for using the
mobile device 200 as an external storage device, a modem, a
serial port, or the like. When using a USB connection, if the
wired interface is initially set to use the mobile device 200 as
an external storage device, a change to a serial port mode is
required.

Referring to FIG. 4, in performing the change to the serial
port mode, when receiving a mode change request from the
host device 205, the mobile device 200 changes a connection
mode to a serial port mode, in step S410. When receiving a
current mode check request from the host device 205, the
mobile device 200 checks a current mode and responds, in
step S420. Meanwhile, according to some embodiments of
this invention, the mobile device 200 may change a serial port
mode again into a connection mode, such as a modem mode,
upon detecting a disconnection with the host device 205.

After a change to a serial port mode is performed, the
mobile device 200 may receive an application execution
request from the host device 205. Then, the mobile device 200
executes the requested application, in step S430.

Since applications installed in the mobile device normally
have exclusive device permission for a connection between
the mobile device and any external device, the external device
cannot execute applications installed in the mobile device.
However, according to embodiments of this invention, even
when the mobile device is connected to the external device,

US 9,215,271 B2

7

the external device can offer, to the mobile device, a com-
mand to execute an application installed in the mobile device
through the serial port. Then, the mobile device, upon receiv-
ing such an application execution command, executes the
requested application. Accordingly, the external device can
execute an application installed in the mobile device.

After an application execution, the mobile device 200 may
receive a command to perform a particular function of the
executed application from the host device 205. Then the
mobile device 200 performs the requested function, in step
S440.

FIG. 5 is a flow diagram illustrating a detailed process for
executing an application of a mobile device 200 in accor-
dance with an embodiment of the present invention.

Referring to FIG. 5, the host device 205 sends a mode
change request for changing a connection mode of the mobile
device to a serial port mode, in step S510. If the mobile device
200 is already operating in the serial port mode, step S510
may be omitted.

Upon receiving the mode change request, the mobile
device 200 changes the connection mode to the serial port
mode and then sends a mode change response to the host
device 205, in step S520. If the mobile device 200 does not
support the serial port mode, or fails to perform the mode
change, the mobile device 200 may not respond or may send
a failure response to the host device 205.

Additionally, the host device 205 may send a current mode
check request to check a current connection mode of the
mobile device 200, in step S530. Then the mobile device 200
sends a current mode check response to the host device 205 in
response to the received request, in step S540. If the mobile
device 200 does not support the serial port mode, or fails to
perform a mode change, the mobile device 200 may not
respond or may send a failure response. In case of operating
in another connection mode, the mobile device 200 may send
an invalid response message.

After the connection mode of the mobile device 200 is
changed to the serial port mode, the host device 205 sends an
application execution request for executing any application
installed in the mobile device 200 to the mobile device 200, in
step S550. The application execution request may contain an
IDentification (ID) or type for identifying an application to be
executed. If the requested application has already been
installed in the mobile device 200 and is executable, the
mobile device 200 executes the requested application. Upon
executing the application, the mobile device 200 sends an
application execution response indicating an execution suc-
cess to the host device 205, in step S560.

However, if the requested application has not already been
installed in the mobile device 200 or execution of the appli-
cation fails, the mobile device 200 sends an application
execution response indicating a failure in execution to the
host device 205, in step S560.

If the application is successfully executed, the host device
205 and the mobile device 200 send and receive commands to
perform functions of the application to and from each other, in
step S570.

FIG. 6 is a flow diagram illustrating a signal flow between
internal blocks of a mobile device 200 when an application of
the mobile device 200 is executed in accordance with an
embodiment of the present invention.

In the example described with reference to FIG. 6, it is
assumed that the mobile device 200 is connected to the host
device 205 through a wired interface, but a wireless interface
may be used in accordance with embodiments of the present
invention. When any command is offered to the mobile device
200 by the host device 205, this command is forwarded to the

20

25

30

40

45

55

8

serial port system manager 310 through the device driver 250,
in step S605. This command may include predefined com-
mands, as shown in Table 1, as well as any other commands
for performing functions of the application.

Then the serial port system manager 310 forwards the
received command to the protocol parser 320, in step S610.
The protocol parser 320 analyzes a command received from
the serial port system manager 310, in step S615 and, depend-
ing on analysis results, checks whether the received com-
mand is a predefined command, in step S620. In determining
whether the received command is a predefined command, the
protocol parser 320 may compare the parsed command with a
command list stored in the protocol memory unit 330. If the
parsed command is contained in the command list of the
protocol memory unit 330, the protocol parser 320 regards the
received command as a predefined command. If the parsed
command is not contained in the command list of the protocol
memory unit 330, the protocol parser 320 regards it as a
non-predefined command.

According to some embodiments of this invention, a mode
change request, a current mode check request, and an appli-
cation execution request, all of which are shown in Table 1,
are predefined commands. However, an application function
run command is a non-predefined command.

If the parsed command is a non-predefined command, the
protocol parser 320 forwards the parsed command to the
serial port client module 230, in step S625. This command is
forwarded to the application module 220 to perform a relevant
function of the application.

However, if the parsed command is a predefined command,
the protocol parser 320 determines whether self-processing
of the command by the protocol parser 320 is permitted, in
step S630. According to some embodiments of this invention,
amode change request and a current mode check request may
be self-processable commands that can be processed by the
protocol parser 320.

In case of a self-processable command, the protocol parser
320 processes the command and creates a response indicating
processing results, in step S635, and sends the created
response to the serial port system manager 310, in step S637.
This response is forwarded to the host device 205 through the
device driver 250.

When the command is a non-self-processable command,
the protocol parser 320 forwards the command to the appli-
cation manager 350, in step S633. Upon receiving the com-
mand, the application manager 350 determines whether the
received command is an application execution command, in
step S640.

If the received command is an application execution com-
mand, the application manager 350 tries to execute a specific
application according to the command, in step S645. In this
step, the application manager 350 can identify the specific
application to be executed, using type, identifier, etc. con-
tained in an application execution request.

After attempting to execute the application, the application
manager 350 performs either step S650 or S655 according to
whether the application is successfully executed. If the appli-
cation is successfully executed, the application manager 350
creates a success response, in step S650, but if the application
fails to be executed, the application manager 350 creates a
failure response, in step S655. The application manager 350
sends the created response to the serial port system manager
310 through the protocol parser 320, in step S660.

The serial port system manager 310 forwards the received
response to the host device 205, in step S665.

As described herein, when the mobile device 200 is con-
nected to the host device 205 through an interface, a connec-

US 9,215,271 B2

9

tion mode of the mobile device 200 can change to a serial port
mode at the request of the host device 205. Additionally, any
application installed in the mobile device 200 operating in the
serial port mode can be executed and controlled by the host
device 205.

While this invention has been shown and described with
reference to particular embodiments thereof, it will be under-
stood by those skilled in the art that various changes in form
and details may be made therein without departing from the
spirit and scope of the invention as defined by the appended
claims.

What is claimed is:

1. A method comprising:

receiving, at a first device, a message from a second device
external to the first device, the message including an
application identifier;

analyzing the message received from the second device;

executing, at the first device, at least one application among
a plurality of applications, based at least in part on the
application identifier based on the analysis of the mes-
sage;

analyzing a received command and determining that a
parser processes the command or forwards the com-
mand to an application module; and

performing, at the first device, the function of the at least
one application, based at least in part on the forwarded
command.

2. The method of claim 1, wherein the command is received

from the second device as part of the message.

3. The method of claim 1, wherein the command is received
from the second device separately from the message.

4. The method of claim 1, wherein the command comprises
a plurality of characters.

5. The method of claim 4, wherein a syntactical meaning of
the plurality of characters corresponds to at least one function
in relation with the plurality of applications.

6. The method of claim 1, receiving the message comprises
detecting, at the first device, a connection with the second
device.

7. The method of claim 6, wherein the connection com-
prises at least one of a wired or a wireless connection.

8. The method of claim 1, wherein the performing is based
on a determination that at least a portion of the command
corresponds to a predefined command.

9. The method of claim 1, further comprising:

setting a connection mode of the first device, based at least
in part on a protocol supported at the second device.

10. An apparatus comprising:

a memory operatively coupled to the apparatus to store a
plurality of applications;

a controller to receive a message including an application
identifier from another device, execute at least one appli-
cation among the plurality of applications based at least
in part on the application identifier, and perform a func-

25

40

45

50

10

tion of the at least one application based at least in part
on a command received from the other device;

an interface module operatively coupled to a physical inter-

face to receive the command from the other device or
extract the command from the message; and

an application module to perform the function correspond-

ing to the command,

wherein the interface module comprises a parser to analyze

the command and determine that the parser processes
the command or forwards the command to the applica-
tion module, as a result of the analysis of the command.

11. The apparatus of claim 10, wherein the command is
received from the other device as part of the message.

12. The apparatus of claim 10, wherein the command is
received from the other device separately from the message.

13. The apparatus of claim 10, wherein the physical inter-
face comprises at least one of a wired or a wireless interface
circuit.

14. The apparatus of claim 10, wherein the parser is con-
figured to determine that the command includes a predefined
command of the memory.

15. The apparatus of claim 14, wherein the predefined
command comprises at least one of a non-self-processing
command or a self-processing command, and

wherein the parser is configured to forward a least a portion

ofthe command to the application module, based at least
in part on a determination that the command includes the
non-self-processing command.

16. The apparatus of claim 10, wherein the application
module is configured to execute an application corresponding
to the application identifier, as the at least one application.

17. The apparatus of claim 10, wherein a syntactical mean-
ing of the command corresponds to at least one function in
relation with the plurality of applications.

18. A non-transitory machine-readable storage device stor-
ing instructions that, when executed by one or more proces-
sors, cause the one or more processors to perform operations
comprising:

receiving, at a first device, a message from a second device

external to the first device, the message including an
application identifier;

analyzing the message received from the second device;

executing, at the first device, at least one application among

a plurality of applications, based at least in part on the
application identifier, based on the analysis of the mes-
sage;

analyzing a received command and determining that a

parser processes the command or forwards the com-
mand to an application module; and

performing, at the first device, the function of the at least

one application, based at least in part on the forwarded
command received from the second device.

#* #* #* #* #*

